Description

This portfolio has been optimized for achieving the lowest possible historical volatility over the analyzed period with the involved assets. As such, it exhibits the least risk of all our portfolios, and is therefore suited especially for very risk adverse investors with conservative growth expectations.

Please note that this portfolio might use leveraged ETF and single stocks. Should these not be allowed in your retirement account please see our 401k and IRS compatible Conservative, Moderate, and Aggressive Risk Portfolios. Contact us for special requirements.

Methodology & Assets
This portfolio is constructed by our proprietary optimization algorithm based on Modern Portfolio Theory pioneered by Nobel Laureate Harry Markowitz. Using historical returns, the algorithm finds the asset allocation that produced the lowest volatility.

While this portfolio provides an optimized asset allocation based on historical returns, your investment objectives, risk profile and personal experience are important factors when deciding on the best investment vehicle for yourself. You can also use the Portfolio Builder or Portfolio Optimizer to construct your own personalized portfolio.

Assets and weight constraints used in the optimizer process:
  • Bond ETF Rotation Strategy (BRS) (0% to 100%)
  • BUG Permanent Portfolio Strategy (BUG) (0% to 100%)
  • Global Market Rotation Strategy (GMRS) (0% to 100%)
  • Global Sector Rotation Strategy (GSRS) (0% to 100%)
  • Maximum Yield Strategy (MYRS) (0% to 100%)
  • Short Term Bond Strategy (STBS) (0% to 50%)
  • Universal Investment Strategy (UIS) (0% to 100%)
  • Universal Investment Strategy 2x Leverage (UISx2) (0% to 100%)
  • US Market Strategy (USMarket) (0% to 100%)
  • US Market Strategy 2x Leverage (USMx2) (0% to 100%)
  • US Sector Rotation Strategy (USSECT) (0% to 100%)
  • World Top 4 Strategy (WTOP4) (0% to 100%)

Statistics (YTD)

What do these metrics mean? [Read More] [Hide]

TotalReturn:

'The total return on a portfolio of investments takes into account not only the capital appreciation on the portfolio, but also the income received on the portfolio. The income typically consists of interest, dividends, and securities lending fees. This contrasts with the price return, which takes into account only the capital gain on an investment.'

Which means for our asset as example:
  • Looking at the total return, or increase in value of 37.4% in the last 5 years of Minimum Volatility Portfolio, we see it is relatively lower, thus worse in comparison to the benchmark SPY (100.7%)
  • Compared with SPY (33.2%) in the period of the last 3 years, the total return of 12.8% is lower, thus worse.

CAGR:

'The compound annual growth rate isn't a true return rate, but rather a representational figure. It is essentially a number that describes the rate at which an investment would have grown if it had grown the same rate every year and the profits were reinvested at the end of each year. In reality, this sort of performance is unlikely. However, CAGR can be used to smooth returns so that they may be more easily understood when compared to alternative investments.'

Using this definition on our asset we see for example:
  • Compared with the benchmark SPY (15%) in the period of the last 5 years, the annual return (CAGR) of 6.6% of Minimum Volatility Portfolio is lower, thus worse.
  • Compared with SPY (10%) in the period of the last 3 years, the annual return (CAGR) of 4.1% is lower, thus worse.

Volatility:

'Volatility is a rate at which the price of a security increases or decreases for a given set of returns. Volatility is measured by calculating the standard deviation of the annualized returns over a given period of time. It shows the range to which the price of a security may increase or decrease. Volatility measures the risk of a security. It is used in option pricing formula to gauge the fluctuations in the returns of the underlying assets. Volatility indicates the pricing behavior of the security and helps estimate the fluctuations that may happen in a short period of time.'

Using this definition on our asset we see for example:
  • The historical 30 days volatility over 5 years of Minimum Volatility Portfolio is 4.6%, which is smaller, thus better compared to the benchmark SPY (20.9%) in the same period.
  • During the last 3 years, the historical 30 days volatility is 2.9%, which is smaller, thus better than the value of 17.3% from the benchmark.

DownVol:

'The downside volatility is similar to the volatility, or standard deviation, but only takes losing/negative periods into account.'

Applying this definition to our asset in some examples:
  • Looking at the downside risk of 3.4% in the last 5 years of Minimum Volatility Portfolio, we see it is relatively lower, thus better in comparison to the benchmark SPY (15%)
  • Looking at downside risk in of 1.8% in the period of the last 3 years, we see it is relatively smaller, thus better in comparison to SPY (12%).

Sharpe:

'The Sharpe ratio was developed by Nobel laureate William F. Sharpe, and is used to help investors understand the return of an investment compared to its risk. The ratio is the average return earned in excess of the risk-free rate per unit of volatility or total risk. Subtracting the risk-free rate from the mean return allows an investor to better isolate the profits associated with risk-taking activities. One intuition of this calculation is that a portfolio engaging in 'zero risk' investments, such as the purchase of U.S. Treasury bills (for which the expected return is the risk-free rate), has a Sharpe ratio of exactly zero. Generally, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted return.'

Using this definition on our asset we see for example:
  • The Sharpe Ratio over 5 years of Minimum Volatility Portfolio is 0.89, which is larger, thus better compared to the benchmark SPY (0.6) in the same period.
  • Looking at Sharpe Ratio in of 0.55 in the period of the last 3 years, we see it is relatively higher, thus better in comparison to SPY (0.44).

Sortino:

'The Sortino ratio measures the risk-adjusted return of an investment asset, portfolio, or strategy. It is a modification of the Sharpe ratio but penalizes only those returns falling below a user-specified target or required rate of return, while the Sharpe ratio penalizes both upside and downside volatility equally. Though both ratios measure an investment's risk-adjusted return, they do so in significantly different ways that will frequently lead to differing conclusions as to the true nature of the investment's return-generating efficiency. The Sortino ratio is used as a way to compare the risk-adjusted performance of programs with differing risk and return profiles. In general, risk-adjusted returns seek to normalize the risk across programs and then see which has the higher return unit per risk.'

Using this definition on our asset we see for example:
  • The ratio of annual return and downside deviation over 5 years of Minimum Volatility Portfolio is 1.19, which is larger, thus better compared to the benchmark SPY (0.83) in the same period.
  • Compared with SPY (0.62) in the period of the last 3 years, the excess return divided by the downside deviation of 0.86 is greater, thus better.

Ulcer:

'The ulcer index is a stock market risk measure or technical analysis indicator devised by Peter Martin in 1987, and published by him and Byron McCann in their 1989 book The Investors Guide to Fidelity Funds. It's designed as a measure of volatility, but only volatility in the downward direction, i.e. the amount of drawdown or retracement occurring over a period. Other volatility measures like standard deviation treat up and down movement equally, but a trader doesn't mind upward movement, it's the downside that causes stress and stomach ulcers that the index's name suggests.'

Which means for our asset as example:
  • The Ulcer Ratio over 5 years of Minimum Volatility Portfolio is 1.48 , which is lower, thus better compared to the benchmark SPY (9.32 ) in the same period.
  • During the last 3 years, the Ulcer Index is 1.13 , which is lower, thus better than the value of 10 from the benchmark.

MaxDD:

'A maximum drawdown is the maximum loss from a peak to a trough of a portfolio, before a new peak is attained. Maximum Drawdown is an indicator of downside risk over a specified time period. It can be used both as a stand-alone measure or as an input into other metrics such as 'Return over Maximum Drawdown' and the Calmar Ratio. Maximum Drawdown is expressed in percentage terms.'

Which means for our asset as example:
  • Compared with the benchmark SPY (-33.7 days) in the period of the last 5 years, the maximum DrawDown of -12.1 days of Minimum Volatility Portfolio is larger, thus better.
  • Compared with SPY (-24.5 days) in the period of the last 3 years, the maximum reduction from previous high of -2.7 days is larger, thus better.

MaxDuration:

'The Maximum Drawdown Duration is an extension of the Maximum Drawdown. However, this metric does not explain the drawdown in dollars or percentages, rather in days, weeks, or months. It is the length of time the account was in the Max Drawdown. A Max Drawdown measures a retrenchment from when an equity curve reaches a new high. It’s the maximum an account lost during that retrenchment. This method is applied because a valley can’t be measured until a new high occurs. Once the new high is reached, the percentage change from the old high to the bottom of the largest trough is recorded.'

Applying this definition to our asset in some examples:
  • Compared with the benchmark SPY (488 days) in the period of the last 5 years, the maximum time in days below previous high water mark of 291 days of Minimum Volatility Portfolio is lower, thus better.
  • During the last 3 years, the maximum days under water is 291 days, which is lower, thus better than the value of 488 days from the benchmark.

AveDuration:

'The Drawdown Duration is the length of any peak to peak period, or the time between new equity highs. The Avg Drawdown Duration is the average amount of time an investment has seen between peaks (equity highs), or in other terms the average of time under water of all drawdowns. So in contrast to the Maximum duration it does not measure only one drawdown event but calculates the average of all.'

Using this definition on our asset we see for example:
  • Compared with the benchmark SPY (123 days) in the period of the last 5 years, the average days below previous high of 59 days of Minimum Volatility Portfolio is smaller, thus better.
  • During the last 3 years, the average days below previous high is 78 days, which is lower, thus better than the value of 180 days from the benchmark.

Performance (YTD)

Historical returns have been extended using synthetic data.

Allocations ()

Allocations

Returns (%)

  • Note that yearly returns do not equal the sum of monthly returns due to compounding.
  • Performance results of Minimum Volatility Portfolio are hypothetical and do not account for slippage, fees or taxes.
  • Results may be based on backtesting, which has many inherent limitations, some of which are described in our Terms of Use.